3.59 \(\int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=66 \[ \frac {\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac {4 \sin (c+d x)}{3 a^2 d (\cos (c+d x)+1)}-\frac {\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

arctanh(sin(d*x+c))/a^2/d-4/3*sin(d*x+c)/a^2/d/(1+cos(d*x+c))-1/3*sin(d*x+c)/d/(a+a*cos(d*x+c))^2

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2766, 2978, 12, 3770} \[ \frac {\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac {4 \sin (c+d x)}{3 a^2 d (\cos (c+d x)+1)}-\frac {\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + a*Cos[c + d*x])^2,x]

[Out]

ArcTanh[Sin[c + d*x]]/(a^2*d) - (4*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - Sin[c + d*x]/(3*d*(a + a*Cos[c
 + d*x])^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx &=-\frac {\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {(3 a-a \cos (c+d x)) \sec (c+d x)}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac {4 \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int 3 a^2 \sec (c+d x) \, dx}{3 a^4}\\ &=-\frac {4 \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \sec (c+d x) \, dx}{a^2}\\ &=\frac {\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac {4 \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.29, size = 152, normalized size = 2.30 \[ -\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (\tan \left (\frac {c}{2}\right ) \cos \left (\frac {1}{2} (c+d x)\right )+\sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+6 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )+8 \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right )\right )}{3 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + a*Cos[c + d*x])^2,x]

[Out]

(-2*Cos[(c + d*x)/2]*(6*Cos[(c + d*x)/2]^3*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] +
Sin[(c + d*x)/2]]) + Sec[c/2]*Sin[(d*x)/2] + 8*Cos[(c + d*x)/2]^2*Sec[c/2]*Sin[(d*x)/2] + Cos[(c + d*x)/2]*Tan
[c/2]))/(3*a^2*d*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

fricas [A]  time = 0.90, size = 114, normalized size = 1.73 \[ \frac {3 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (4 \, \cos \left (d x + c\right ) + 5\right )} \sin \left (d x + c\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*(3*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*log(sin(d*x + c) + 1) - 3*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*l
og(-sin(d*x + c) + 1) - 2*(4*cos(d*x + c) + 5)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^
2*d)

________________________________________________________________________________________

giac [A]  time = 0.44, size = 77, normalized size = 1.17 \[ \frac {\frac {6 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac {6 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} - \frac {a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(6*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - 6*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 - (a^4*tan(1/2*d*x +
1/2*c)^3 + 9*a^4*tan(1/2*d*x + 1/2*c))/a^6)/d

________________________________________________________________________________________

maple [A]  time = 0.09, size = 77, normalized size = 1.17 \[ -\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{6 d \,a^{2}}-\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d \,a^{2}}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d \,a^{2}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+a*cos(d*x+c))^2,x)

[Out]

-1/6/d/a^2*tan(1/2*d*x+1/2*c)^3-3/2/d/a^2*tan(1/2*d*x+1/2*c)-1/d/a^2*ln(tan(1/2*d*x+1/2*c)-1)+1/d/a^2*ln(tan(1
/2*d*x+1/2*c)+1)

________________________________________________________________________________________

maxima [A]  time = 0.99, size = 98, normalized size = 1.48 \[ -\frac {\frac {\frac {9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {6 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{2}} + \frac {6 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{2}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*((9*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 6*log(sin(d*x + c)/(cos(
d*x + c) + 1) + 1)/a^2 + 6*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a^2)/d

________________________________________________________________________________________

mupad [B]  time = 0.37, size = 43, normalized size = 0.65 \[ -\frac {9\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-12\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{6\,a^2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)*(a + a*cos(c + d*x))^2),x)

[Out]

-(9*tan(c/2 + (d*x)/2) - 12*atanh(tan(c/2 + (d*x)/2)) + tan(c/2 + (d*x)/2)^3)/(6*a^2*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\sec {\left (c + d x \right )}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1), x)/a**2

________________________________________________________________________________________